6. The x-intercepts are -0.9 and 1.9.

7. Here is the diagram.

The positive intercept is t = 14. The freefall lasts 14 s.

8. $\frac{-4+2}{2} = -1$

So the axis of symmetry is x = -1. **9.** The *x*-intercepts are –4 and 2. So the equation is y = a(x + 4)(x - 2). The *y*-intercept is –2. -2 = a(0 + 4)(0 - 2)-2 = -8a 0.25 = ay = 0.25(x + 4)(x - 2) $y = 0.25x^2 + 0.5x - 2$ **10.** a) The equation is y = a(x + 6)(x - 12). The y-intercept is -36. -36 = a(0 + 6)(0 - 12)-36 = -72a 0.5 = a y = 0.5(x + 6)(x - 12) $y = 0.5x^2 - 3x - 36$ **b)** The axis of symmetry is $x = \frac{-6+12}{2} = 3$. f(3) = 0.5(3 + 6)(3 - 12)f(3) = 0.5(9)(-9)f(3) = -40.5The vertex is (3, -40.5). c) Domain and range: $\{(x, y) \mid x \in R, y \ge -40.5, y \in R\}$

11.
$$y = 3x^2 + 6x - 18$$

 $y = 3x(x + 2) - 18$
 $3x = 0$ $x + 2 = 0$
 $x = 0$ $x = -2$
So, $(0, -18)$ and $(-2, -18)$ are points on the parabola.
 $\frac{0 + (-2)}{2} = -1$
 $y = 3(-1)^2 + 6(-1) - 18$
 $y = -21$
So, the vertex is at $(-1, -21)$.
 $y = 3x^2 + 6x - 18$

12. The revenue is the price times the number of bicycles. Let the number of decreases in price be *x* and the revenue be *y*. y = (39 - 1.5x)(63 + 7x)

 $y = -10.5x^{2} + 178.5x + 2457$ $y = -10.5(x^{2} - 17x - 234)$ Factoring: y = -10.5(x + 9)(x - 26)The vertex is at $x = \frac{-9 + 26}{2}$ or 8.5.

The maximum revenue would be achieved at a price of (39 - 1.5(8.5)) = 26.25.

Lesson 7.5: Solving Quadratic Equations by Factoring, page 405

1. a) $x^2 - 11x + 28 = (x - 4)(x - 7)$ x - 4 = 0x = 4or x - 7 = 0x = 7The roots are 4 and 7. **b)** $x^2 - 7x - 30 = (x - 10)(x + 3)$ x - 10 = 0*x* = 10 or x + 3 = 0x = -3The roots are -3 and 10. c) $2y^2 + 11y + 5 = (y + 5)(2y + 1)$ y + 5 = 0y = -5or 2y + 1 = 0y = -0.5The roots are -5 and -0.5.

d) $4t^2 + 7t - 15 = (4t - 5)(t + 3)$ 4t - 5 = 0t = 1.25 or t + 3 = 0*t* = –3 The roots are -3 and 1.25. **2.** a) $x^2 - 121 = (x - 11)(x + 11)$ x - 11 = 0x = 11or x + 11 = 0*x* = -11 The roots are -11 and 11. **b)** $9r^2 - 100 = (3r - 10)(3r + 10)$ 3r - 10 = 0 $r = \frac{10}{3}$ or 3r + 10 = 0 $r = -\frac{10}{3}$ The roots are $-\frac{10}{3}$ and $\frac{10}{3}$. c) $x^2 - 15x = x(x - 15)$ x = 0or x - 15 = 0*x* = 15 The roots are 0 and 15. **d)** $3y^2 + 48y = 3y(y + 16)$ 3y = 0*y* = 0 or y + 16 = 0y = -16The roots are -16 and 0. **e)** $s^2 - 12s + 36 = (s - 6)(s - 6)$ s - 6 = 0s = 6 The root is 6. **f)** $16p^2 + 8p + 1 = (4p + 1)(4p + 1)$ 4p + 1 = 0p = -0.25The root is -0.25. **g**) $-14z^2 + 35z = -7z(2z - 5)$ -7z = 0*z* = 0 or 2z - 5 = 0z = 2.5The roots are 0 and 2.5.

h) $5q^2 - 9q = 5q\left(q - \frac{9}{5}\right)$ 5q = 0 $\dot{q} = 0$ or $q - \frac{9}{5} = 0$ $q = \frac{9}{5}$ The roots are 0 and $\frac{9}{5}$ **3.** a) $x^2 - 9x - 70 = (x - 14)(x + 5)$ x - 14 = 0x = 14or x + 5 = 0x = -5The roots are -5 and 14. $(-5)^{2} - 9(-5) - 70 = 25 + 45 - 70$ $(-5)^{2} - 9(-5) - 70 = 0$ $(14)^{2} - 9(14) - 70 = 196 - 126 - 70$ $(14)^{2} - 9(14) - 70 = 0$ **b**) $\dot{x}^2 + 19\dot{x} + 48 = (x + 16)(x + 3)$ x + 16 = 0x = -16or x + 3 = 0x = -3The roots are -16 and -3. $(-16)^2 + 19(-16) + 48 = 256 - 304 + 48$ $(-16)^2 + 19(-16) + 48 = 0$ $(-3)^2 + 19(-3) + 48 = 9 - 57 + 48$ $(-3)^2 + 19(-3) + 48 = 0$ \hat{c}) $\hat{3}a^2 + 1\hat{1}a - 4 = (3a - 1)(a + 4)$ 3a - 1 = 01 a = 3 or a + 4 = 0a = -4 The roots are -4 and $\frac{1}{3}$. $3(-4)^{2}_{2} + 11(-4) - 4 = 48 - 44 - 4$ $3(-4)^{2} + 11(-4) - 4 = 0$ $3\left(\frac{1}{3}\right)^2 + 11\left(\frac{1}{3}\right) - 4 = \frac{1}{3} + \frac{11}{3} - 4$ $3\left(\frac{1}{3}\right)^2 + 11\left(\frac{1}{3}\right) - 4 = \frac{12}{3} - 4$ $3\left(\frac{1}{3}\right)^2 + 11\left(\frac{1}{3}\right) - 4 = 0$

d)
$$6t^2 - 7t - 20 = (2t - 5)(3t + 4)$$

 $2t - 5 = 0$
 $t = \frac{5}{2}$
or
 $3t + 4 = 0$
 $t = -\frac{4}{3}$
The roots are $-\frac{4}{3}$ and $\frac{5}{2}$.
 $6\left(-\frac{4}{3}\right)^2 - 7\left(-\frac{4}{3}\right) - 20 = \frac{32}{3} + \frac{38}{3} - 20$
 $6\left(-\frac{4}{3}\right)^2 - 7\left(-\frac{4}{3}\right) - 20 = \frac{60}{3} - 20$
 $6\left(-\frac{4}{3}\right)^2 - 7\left(-\frac{4}{3}\right) - 20 = 0$
 $6\left(\frac{5}{2}\right)^2 - 7\left(\frac{5}{2}\right) - 20 = \frac{75}{2} - \frac{35}{2} - 20$
 $6\left(\frac{5}{2}\right)^2 - 7\left(\frac{5}{2}\right) - 20 = \frac{40}{2} - 20$
 $6\left(\frac{5}{2}\right)^2 - 7\left(\frac{5}{2}\right) - 20 = 0$
4. a) $2x^2 + 5x - 12 = (2x - 3)(x + 4)$
 $2x - 3 = 0$
 $x = \frac{3}{2}$
or
 $x + 4 = 0$
 $x = -4$
The roots are -4 and $\frac{3}{2}$.
b) $4x^2 + 9x - 9 = (4x - 3)(x + 3)$
 $4x - 3 = 0$
 $x = \frac{3}{4}$
or
 $x + 3 = 0$
 $x = 3$
The roots are -3 and $\frac{3}{4}$.
c) $49d^2 + 42d + 9 = (7d + 3)(7d + 3)$
 $7d + 3 = 0$
 $d = -\frac{3}{7}$
The root is $-\frac{3}{7}$.

d) $81g^2 - 169 = (9g - 13)(9g + 13)$ 9g - 13 = 0 $g = \frac{13}{9}$ or 9g + 13 = 0 $g = -\frac{13}{9}$ The roots are $-\frac{13}{9}$ and $\frac{13}{9}$. **5.** a) $20x^2 - 21x - 27 = (5x - 9)(4x + 3)$ 5x - 9 = 0*x* = 1.8 or 4x + 3 = 0x = -0.75The roots are -0.75 and 1.8. b) e.g., Geeta may have had the wrong signs between the terms within each factor. $5u^{2} - 10u - 315 = 5(u^{2} - 2u - 63)$ $5u^{2} - 10u - 315 = 5(u - 9)(u + 7)$ 6. a) 5(u-9) = 0*u* = 9 or u + 7 = 0u = -7The roots are -7 and 9. **b)** $0.25x^2 + 1.5x + 2 = 0.25(x^2 + 6x + 8)$ $0.25x^2 + 1.5x + 2 = 0.25(x + 2)(x + 4)$ 0.25(x+2) = 0x = -2or x + 4 = 0x = -4The roots are -4 and -2. c) $1.4y^2 + 5.6y - 16.8 = 1.4(y^2 + 4y - 12)$ $1.4y^2 + 5.6y - 16.8 = 1.4(y + 6)(y - 2)$ y + 6 = 0y = -6or y - 2 = 0y = 2The roots are -6 and 2. $\frac{1}{2}k^2 + 5k + 12.5 = \frac{1}{2}(k^2 + 10k + 25)$ d) $\frac{1}{2}k^2 + 5k + 12.5 = \frac{1}{2}(k+5)^2$ k + 5 = 0k = -5 The root is -5. 7. e.g., (x + 5)(x + 12) = 0 $x^2 + 17x + 60 = 0$

8. $-40(x-5)^2 + 25000 = 21000$ $-40(x-5)^2 = -4000$ $(x-5)^2 = 100$ x-5 = 10 or x-5 = -10x = 15 or x = -5

Fifteen increases of 10¢ would make the ticket price \$3.50.

Five decreases of 10¢ would make the ticket price \$1.50. 9. $20x^2 - 37x + 8 = 0$

The possible factor pairs for 20 are 1, 20; 2, 10; and 4, 5. The possible factor pairs for 8 are 1, 8 and 2, 4. The middle term is odd, so 5 is the only number that will give an odd sum.

The factor pair for 20 must be 4, 5. 4(8) + 5(1) = 32 + 5 or 37The factor pair for 8 must be 1, 8. $20x^2 - 37x + 8 = (5x - 8)(4x - 1)$ 5x - 8 = 0 $x = \frac{8}{5}$ or 4x - 1 = 0 $x = \frac{1}{4}$ The roots are $\frac{1}{4}$ and $\frac{8}{5}$.

10. Going from the second line to the third line, 100 divided by 5 is 20, not 25. Also, in the final step, it is possible that the final result could be positive or

negative. Therefore, the roots are $-\sqrt{20}$ and $\sqrt{20}$. **11.** The first line was incorrectly factored.

 $4r^2 - 9r = 0$ r(4r - 9) = 0r = 0or 4r - 9 = 04r = 9 $r = \frac{9}{4}$ The roots are 0 and $\frac{9}{4}$. y = 8(x - 0.5)(x + 0.75)y = 8x² + 2x - 3 12. a) e.g., b) e.g., No, we had different functions. c) e.g., Multiply by 2 and by -3. $y = 16x^{2} + 4x - 6$, $y = -24x^{2} - 6x + 9$ **13. a)** $0 = -0.25n^2 + 6n - 27$ $0 = -0.25(n^2 - 24n + 108)$ 0 = -0.25(n-6)(n-18)n - 6 = 0n = 6or n - 18 = 0n = 18

She must sell 600 or 1800 posters to break even.

 $5 = -0.25n^2 + 6n - 27$ b) $0 = -0.25n^2 + 6n - 32$ $0 = -0.25(n^2 - 24n + 128)$ 0 = -0.25(n-8)(n-16)n - 8 = 0n = 8 or n - 16 = 0n = 16She must sell 800 or 1600 posters to make \$5000. $9 = -0.25n^{2} + 6n - 27$ $0 = -0.25n^{2} + 6n - 36$ C) $0 = -0.25(n^2 - 24n + 144)$ 0 = -0.25(n - 12)(n - 12)n - 12 = 0n = 12She must sell 1200 posters to make \$9000. **d)** D: *n* ≥ 0; R: –27 ≤ *P* ≤ 9 If Sanela sells 0 posters, she will incur a loss of \$27 000; her maximum profit is \$9000. **14. a)** $0 = -25t^2 - 5t + 1260$ $0 = -5(5t^2 + t - 252)$ Factor pairs of 5: 5, 1 Factor pairs of 252: 252, 1; 3, 84; 6, 42, 12, 21; 36, 7; ... 5(7) = 35 and 1(36) = 36 0 = -5(5t + 36)(t - 7)5t + 36 = 0t = -7.2or t - 7 = 0*t* = 7 *t* = 7 or *t* = -7.2 t must be positive. The rock will hit the water in 7 s. b) The rock hits the water at 7 s so: D: $0 \le t \le 7$, where *t* is the time in seconds. **15.** a) e.g. $x^2 - 2x - 8 = 0$ **b)** e.g. $x^2 - 2x - 9 = 0$; I changed the "c" term. 16. a) i) Write the equation in standard form. ii) Factor fully. iii) Set each factor with a variable equal to zero (since the product is zero, one factor must be equal to zero). iv) Solve. b) When the guadratic equation is factorable, solve by factoring; otherwise, solve by graphing. 17. a) Since the equation is factorable, I can predict that it is a difference of squares. **b)** The other root is -6. c) $(\sqrt{ax} + \sqrt{c})(\sqrt{ax} - \sqrt{c}) = 0$, where $\frac{\sqrt{c}}{\sqrt{a}} = 6$

i)
$$ax^2 - c = 0$$

18. The third side is 60 - n - 2n - 6 = 54 - 3n. Solve for *n* using the Pythagorean theorem. $n^2 + (54 - 3n)^2 = (2n + 6)^2$ $n^2 + 2916 - 324n + 9n^2 = 4n^2 + 24n + 36$ $6n^2 - 348n + 2880 = 0$ Divide by 6: $n^2 - 58n + 480 = 0$ Factor pairs of 480: 2, 240; 4, 120; 8, 60; 16, 30; 10, 48... (n - 10)(n - 48) = 0n = 10 or n = 48*n* cannot be 48 because it would make the third side (54 - 3n) negative.

n = 10 2n + 6 = 2654 - 3n = 24

The sides of the triangles are 10 cm, 24 cm, and 26 cm.

Lesson 7.6: Vertex Form of a Quadratic Function, page 417

1. a) i) a > 0, so the parabola opens upward.
ii) The vertex is (3, 7).
iii) The axis of symmetry is x = 3.
b) i) a < 0, so the parabola opens downward.
ii) The vertex is (-7, -3).
iii) The axis of symmetry is x = -7.
c) i) a > 0, so the parabola opens upward.
ii) The vertex is (2, -9).
iii) The axis of symmetry is x = 2.
d) i) a > 0, so the parabola opens upward.
ii) The vertex is (-1, 10).
iii) The axis of symmetry is x = -1.
e) i) a < 0, so the parabola opens downward.
ii) The vertex is (0, 5).

iii) The axis of symmetry is x = 0.

2. a) a < 0, so the parabola opens downward and has a maximum at (0, 3). The maximum is above the *x*-axis, so it will have two *x*-intercepts.

b) a < 0, so the parabola opens downward and has a maximum at (-2, -5). The maximum is below the *x*-axis, so it will have no *x*-intercepts.

			2-	^ 9	(x)	
<			_			×
-6	-4	-2	-2		-	2
			-4			
q(x)	= -(x	+ 2)	2'	5		
	-/		1			
			-8/			
	I	-	10 -			

c) a > 0, so the parabola opens upward and has a minimum at (-4, 2). The minimum is above the *x*-axis, so it will have no *x*-intercepts.

	1			ĵo '	Λm	(x)
				/8-		
				6		
			/	4 -		
m(x	() = (x	+ 4	/) ² +	2		x
<8	-6	-4	_	2 0		$\overrightarrow{2}$
			-	-2		

d) a > 0, so the parabola opens upward and has a minimum at (3, -6). The minimum is below the *x*-axis, so it will have two *x*-intercepts.

	6 4	`n	(x) n(x	;) =	: (x	_	3) ²]	6	
	2 -	ł					1			x
<2	0 -2	1		2	_	•	/	5	-	→ 3
	4 -				_	/				
	6			1	Ζ					