6. The x-intercepts are -0.9 and 1.9.

7. Here is the diagram.

The positive intercept is $t=14$.
The freefall lasts 14 s .
8. $\frac{-4+2}{2}=-1$

So the axis of symmetry is $x=-1$.
9. The x-intercepts are -4 and 2.

So the equation is $y=a(x+4)(x-2)$.
The y-intercept is -2 .
$-2=a(0+4)(0-2)$
$-2=-8 a$
$0.25=a$
$y=0.25(x+4)(x-2)$
$y=0.25 x^{2}+0.5 x-2$
10. a) The equation is $y=a(x+6)(x-12)$.

The y-intercept is -36 .
$-36=a(0+6)(0-12)$
$-36=-72 a$
$0.5=a$
$y=0.5(x+6)(x-12)$
$y=0.5 x^{2}-3 x-36$
b) The axis of symmetry is $x=\frac{-6+12}{2}=3$.
$f(3)=0.5(3+6)(3-12)$
$f(3)=0.5(9)(-9)$
$f(3)=-40.5$
The vertex is $(3,-40.5)$.
c) Domain and range: $\{(x, y) \mid x \in R, y \geq-40.5, y \in R\}$
11. $y=3 x^{2}+6 x-18$
$y=3 x(x+2)-18$
$3 x=0 \quad x+2=0$
$x=0 \quad x=-2$
So, $(0,-18)$ and $(-2,-18)$ are points on the parabola.
$\frac{0+(-2)}{2}=-1$
$y=3(-1)^{2}+6(-1)-18$
$y=-21$
So, the vertex is at $(-1,-21)$.

12. The revenue is the price times the number of bicycles. Let the number of decreases in price be x and the revenue be y.
$y=(39-1.5 x)(63+7 x)$
$y=-10.5 x^{2}+178.5 x+2457$
$y=-10.5\left(x^{2}-17 x-234\right)$
Factoring:
$y=-10.5(x+9)(x-26)$
The vertex is at $x=\frac{-9+26}{2}$ or 8.5 .
The maximum revenue would be achieved at a price of $\$(39-1.5(8.5))=\$ 26.25$.

Lesson 7.5: Solving Quadratic Equations by Factoring, page 405

1. a) $x^{2}-11 x+28=(x-4)(x-7)$

$$
x-4=0
$$

$$
x=4
$$

or
$x-7=0$

$$
x=7
$$

The roots are 4 and 7 .
b) $x^{2}-7 x-30=(x-10)(x+3)$

$$
\begin{aligned}
x-10 & =0 \\
x & =10
\end{aligned}
$$

or

$$
\begin{aligned}
x+3 & =0 \\
x & =-3
\end{aligned}
$$

The roots are -3 and 10.
c) $2 y^{2}+11 y+5=(y+5)(2 y+1)$

$$
\begin{aligned}
y+5 & =0 \\
y & =-5
\end{aligned}
$$

or

$$
\begin{aligned}
2 y+1 & =0 \\
y & =-0.5
\end{aligned}
$$

The roots are -5 and -0.5 .
d) $4 t^{2}+7 t-15=(4 t-5)(t+3)$

$$
\begin{aligned}
4 t-5 & =0 \\
t & =1.25
\end{aligned}
$$

or

$$
\begin{aligned}
t+3 & =0 \\
t & =-3
\end{aligned}
$$

The roots are -3 and 1.25.
2. a) $x^{2}-121=(x-11)(x+11)$

$$
x-11=0
$$

$$
x=11
$$

or

$$
\begin{aligned}
x+11 & =0 \\
x & =-11
\end{aligned}
$$

The roots are -11 and 11 .
b) $9 r^{2}-100=(3 r-10)(3 r+10)$ $3 r-10=0$

$$
r=\frac{10}{3}
$$

or

$$
\begin{aligned}
3 r+10 & =0 \\
r & =-\frac{10}{3}
\end{aligned}
$$

The roots are $-\frac{10}{3}$ and $\frac{10}{3}$.
c) $x^{2}-15 x=x(x-15)$
$x=0$
$x=0$
or
$x-15=0$

$$
x=15
$$

The roots are 0 and 15 .
d) $3 y^{2}+48 y=3 y(y+16)$
$3 y=0$
$y=0$
or
$y+16=0$

$$
y=-16
$$

The roots are -16 and 0 .
e) $s^{2}-12 s+36=(s-6)(s-6)$

$$
s-6=0
$$

$$
s=6
$$

The root is 6 .
f) $16 p^{2}+8 p+1=(4 p+1)(4 p+1)$

$$
\begin{aligned}
4 p+1 & =0 \\
p & =-0.25
\end{aligned}
$$

The root is -0.25 .
g) $-14 z^{2}+35 z=-7 z(2 z-5)$
$\begin{aligned}-7 z & =0 \\ z & =0\end{aligned}$
or
$2 z-5=0$

$$
z=2.5
$$

The roots are 0 and 2.5.
h) $5 q^{2}-9 q=5 q\left(q-\frac{9}{5}\right)$

$$
\begin{array}{r}
5 q=0 \\
q=0
\end{array}
$$

or

$$
\begin{aligned}
q-\frac{9}{5} & =0 \\
q & =\frac{9}{5}
\end{aligned}
$$

The roots are 0 and $\frac{9}{5}$.
3. a) $x^{2}-9 x-70=(x-14)(x+5)$

$$
\begin{aligned}
x-14 & =0 \\
x & =14
\end{aligned}
$$

or

$$
\begin{aligned}
x+5 & =0 \\
x & =-5
\end{aligned}
$$

The roots are -5 and 14 .

$$
\begin{aligned}
& (-5)^{2}-9(-5)-70=25+45-70 \\
& (-5)^{2}-9(-5)-70=0 \\
& (14)^{2}-9(14)-70=196-126-70 \\
& (14)^{2}-9(14)-70=0 \\
& \text { b) } x^{2}+19 x+48=(x+16)(x+3) \\
& x+16
\end{aligned} \begin{aligned}
&=0 \\
& x=-16 \\
& \text { or } \begin{aligned}
x+3 & =0 \\
x & =-3
\end{aligned}
\end{aligned}
$$

The roots are -16 and -3 .
$(-16)^{2}+19(-16)+48=256-304+48$
$(-16)^{2}+19(-16)+48=0$
$(-3)^{2}+19(-3)+48=9-57+48$
$(-3)^{2}+19(-3)+48=0$
c) $3 a^{2}+11 a-4=(3 a-1)(a+4)$
$3 a-1=0$

$$
a=\frac{1}{3}
$$

or

$$
\begin{aligned}
a+4 & =0 \\
a & =-4
\end{aligned}
$$

The roots are -4 and $\frac{1}{3}$.
$3(-4)^{2}+11(-4)-4=48-44-4$
$3(-4)^{2}+11(-4)-4=0$
$3\left(\frac{1}{3}\right)^{2}+11\left(\frac{1}{3}\right)-4=\frac{1}{3}+\frac{11}{3}-4$
$3\left(\frac{1}{3}\right)^{2}+11\left(\frac{1}{3}\right)-4=\frac{12}{3}-4$
$3\left(\frac{1}{3}\right)^{2}+11\left(\frac{1}{3}\right)-4=0$
d) $6 t^{2}-7 t-20=(2 t-5)(3 t+4)$

$$
\begin{aligned}
2 t-5 & =0 \\
t & =\frac{5}{2}
\end{aligned}
$$

or

$$
\begin{aligned}
3 t+4 & =0 \\
t & =-\frac{4}{3}
\end{aligned}
$$

The roots are $-\frac{4}{3}$ and $\frac{5}{2}$.
$6\left(-\frac{4}{3}\right)^{2}-7\left(-\frac{4}{3}\right)-20=\frac{32}{3}+\frac{38}{3}-20$
$6\left(-\frac{4}{3}\right)^{2}-7\left(-\frac{4}{3}\right)-20=\frac{60}{3}-20$
$6\left(-\frac{4}{3}\right)^{2}-7\left(-\frac{4}{3}\right)-20=0$
$6\left(\frac{5}{2}\right)^{2}-7\left(\frac{5}{2}\right)-20=\frac{75}{2}-\frac{35}{2}-20$
$6\left(\frac{5}{2}\right)^{2}-7\left(\frac{5}{2}\right)-20=\frac{40}{2}-20$
$6\left(\frac{5}{2}\right)^{2}-7\left(\frac{5}{2}\right)-20=0$
4. a) $2 x^{2}+5 x-12=(2 x-3)(x+4)$

$$
\begin{aligned}
2 x-3 & =0 \\
x & =\frac{3}{2}
\end{aligned}
$$

or

$$
\begin{aligned}
x+4 & =0 \\
x & =-4
\end{aligned}
$$

The roots are -4 and $\frac{3}{2}$.
b) $4 x^{2}+9 x-9=(4 x-3)(x+3)$

$$
\begin{aligned}
4 x-3 & =0 \\
x & =\frac{3}{4}
\end{aligned}
$$

or

$$
\begin{array}{r}
x+3=0 \\
x=3
\end{array}
$$

The roots are -3 and $\frac{3}{4}$.
c) $49 d^{2}+42 d+9=(7 d+3)(7 d+3)$

$$
7 d+3=0
$$

$$
d=-\frac{3}{7}
$$

The root is $-\frac{3}{7}$.
d) $81 g^{2}-169=(9 g-13)(9 g+13)$

$$
\begin{aligned}
9 g-13 & =0 \\
g & =\frac{13}{9}
\end{aligned}
$$

or

$$
\begin{aligned}
9 g+13 & =0 \\
g & =-\frac{13}{9}
\end{aligned}
$$

The roots are $-\frac{13}{9}$ and $\frac{13}{9}$.
5. a) $20 x^{2}-21 x-27=(5 x-9)(4 x+3)$

$$
5 x-9=0
$$

$$
x=1.8
$$

or

$$
\begin{aligned}
4 x+3 & =0 \\
x & =-0.75
\end{aligned}
$$

The roots are -0.75 and 1.8.
b) e.g., Geeta may have had the wrong signs between the terms within each factor.

$$
\text { 6. a) } \quad 5 u^{2}-10 u-315=5\left(u^{2}-2 u-63\right)
$$

$$
5(u-9)=0
$$

$$
u=9
$$

or

$$
\begin{aligned}
u+7 & =0 \\
u & =-7
\end{aligned}
$$

The roots are -7 and 9 .

$$
\begin{aligned}
\text { b) } \quad 0.25 x^{2}+1.5 x+2 & =0.25\left(x^{2}+6 x+8\right) \\
0.25 x^{2}+1.5 x+2 & =0.25(x+2)(x+4) \\
0.25(x+2) & =0 \\
x & =-2
\end{aligned}
$$

or

$$
x+4=0
$$

$$
x=-4
$$

The roots are -4 and -2 .

$$
\text { c) } \begin{aligned}
1.4 y^{2}+5.6 y-16.8 & =1.4\left(y^{2}+4 y-12\right) \\
1.4 y^{2}+5.6 y-16.8 & =1.4(y+6)(y-2) \\
y+6 & =0 \\
y & =-6
\end{aligned}
$$

or

$$
\begin{array}{r}
y-2=0 \\
y=2
\end{array}
$$

The roots are -6 and 2 .
d) $\quad \frac{1}{2} k^{2}+5 k+12.5=\frac{1}{2}\left(k^{2}+10 k+25\right)$

$$
\frac{1}{2} k^{2}+5 k+12.5=\frac{1}{2}(k+5)^{2}
$$

$k+5=0$

$$
k=-5
$$

The root is -5 .
7. e.g., $\quad(x+5)(x+12)=0$

$$
x^{2}+17 x+60=0
$$

8. $-40(x-5)^{2}+25000=21000$

$$
\begin{aligned}
-40(x-5)^{2} & =-4000 \\
(x-5)^{2} & =100 \\
x-5 & =10 \text { or } x-5=-10 \\
x & =15 \text { or } x=-5
\end{aligned}
$$

Fifteen increases of 10ϕ would make the ticket price \$3.50.
Five decreases of 10ϕ would make the ticket price $\$ 1.50$.
9. $20 x^{2}-37 x+8=0$

The possible factor pairs for 20 are 1,20;2,10; and 4, 5.
The possible factor pairs for 8 are 1,8 and 2,4 .
The middle term is odd, so 5 is the only number that will give an odd sum.
The factor pair for 20 must be 4,5 .
$4(8)+5(1)=32+5$ or 37
The factor pair for 8 must be 1,8 .
$20 x^{2}-37 x+8=(5 x-8)(4 x-1)$

$$
5 x-8=0
$$

$$
x=\frac{8}{5}
$$

or

$$
\begin{array}{r}
4 x-1=0 \\
x=\frac{1}{4}
\end{array}
$$

The roots are $\frac{1}{4}$ and $\frac{8}{5}$.
10. Going from the second line to the third line, 100 divided by 5 is 20 , not 25 . Also, in the final step, it is possible that the final result could be positive or
negative. Therefore, the roots are $-\sqrt{20}$ and $\sqrt{20}$.
11. The first line was incorrectly factored.

$$
\begin{aligned}
4 r^{2}-9 r & =0 \\
r(4 r-9) & =0 \\
r & =0 \\
\text { or } & = \\
4 r-9 & =0 \\
4 r & =9 \\
r & =\frac{9}{4}
\end{aligned}
$$

The roots are 0 and $\frac{9}{4}$.
12. a) e.g., $\quad y=8(x-0.5)(x+0.75)$

$$
y=8 x^{2}+2 x-3
$$

b) e.g., No, we had different functions.
c) e.g., Multiply by 2 and by -3 .
$y=16 x^{2}+4 x-6, y=-24 x^{2}-6 x+9$
13. a) $0=-0.25 n^{2}+6 n-27$
$0=-0.25\left(n^{2}-24 n+108\right)$
$0=-0.25(n-6)(n-18)$
$n-6=0$
$n=6$
or

$$
\begin{aligned}
n-18 & =0 \\
n & =18
\end{aligned}
$$

She must sell 600 or 1800 posters to break even.
b) $\quad 5=-0.25 n^{2}+6 n-27$
$0=-0.25 n^{2}+6 n-32$
$0=-0.25\left(n^{2}-24 n+128\right)$
$0=-0.25(n-8)(n-16)$
$n-8=0$
$n=8$
or

$$
\begin{aligned}
n-16 & =0 \\
n & =16
\end{aligned}
$$

She must sell 800 or 1600 posters to make $\$ 5000$.

$$
\text { c) } \begin{aligned}
9 & =-0.25 n^{2}+6 n-27 \\
0 & =-0.25 n^{2}+6 n-36 \\
0 & =-0.25\left(n^{2}-24 n+144\right) \\
0 & =-0.25(n-12)(n-12) \\
n-12 & =0 \\
n & =12
\end{aligned}
$$

She must sell 1200 posters to make $\$ 9000$.
d) D: $n \geq 0$; R: $-27 \leq P \leq 9$

If Sanela sells 0 posters, she will incur a loss of
$\$ 27000$; her maximum profit is $\$ 9000$.
14. a) $0=-25 t^{2}-5 t+1260$

$$
0=-5\left(5 t^{2}+t-252\right)
$$

Factor pairs of 5: 5, 1
Factor pairs of 252: 252, 1; 3, 84; 6, 42, 12, 21;
36, 7; ...
$5(7)=35$ and $1(36)=36$
$0=-5(5 t+36)(t-7)$
$5 t+36=0$
$t=-7.2$
or

$$
t-7=0
$$

$$
t=7
$$

$t=7$ or $t=-7.2$
t must be positive.
The rock will hit the water in 7 s .
b) The rock hits the water at 7 s so:

D: $0 \leq t \leq 7$, where t is the time in seconds.
15. a) e.g. $x^{2}-2 x-8=0$
b) e.g. $x^{2}-2 x-9=0$; I changed the "c" term.
16. a) i) Write the equation in standard form.
ii) Factor fully.
iii) Set each factor with a variable equal to zero (since the product is zero, one factor must be equal to zero).
iv) Solve.
b) When the quadratic equation is factorable, solve by factoring; otherwise, solve by graphing.
17. a) Since the equation is factorable, I can predict that it is a difference of squares.
b) The other root is -6 .
c) $(\sqrt{a} x+\sqrt{c})(\sqrt{a} x-\sqrt{c})=0$, where $\frac{\sqrt{c}}{\sqrt{a}}=6$
d) $a x^{2}-c=0$
18. The third side is $60-n-2 n-6=54-3 n$.

Solve for n using the Pythagorean theorem.

$$
\begin{aligned}
n^{2}+(54-3 n)^{2} & =(2 n+6)^{2} \\
n^{2}+2916-324 n+9 n^{2} & =4 n^{2}+24 n+36 \\
6 n^{2}-348 n+2880 & =0
\end{aligned}
$$

Divide by 6

$$
n^{2}-58 n+480=0
$$

Factor pairs of 480: 2, 240; 4, 120; 8, 60; 16, 30; 10, 48...

$$
\begin{aligned}
(n-10)(n-48) & =0 \\
n & =10 \text { or } n=48
\end{aligned}
$$

n cannot be 48 because it would make the third side ($54-3 n$) negative.

$$
\begin{aligned}
n & =10 \\
2 n+6 & =26 \\
54-3 n & =24
\end{aligned}
$$

The sides of the triangles are $10 \mathrm{~cm}, 24 \mathrm{~cm}$, and 26 cm .

Lesson 7.6: Vertex Form of a Quadratic Function, page 417

1. a) i) $a>0$, so the parabola opens upward.
ii) The vertex is $(3,7)$.
iii) The axis of symmetry is $x=3$.
b) i) a<0, so the parabola opens downward.
ii) The vertex is $(-7,-3)$.
iii) The axis of symmetry is $x=-7$.
c) i) $a>0$, so the parabola opens upward.
ii) The vertex is $(2,-9)$.
iii) The axis of symmetry is $x=2$.
d) i) $a>0$, so the parabola opens upward.
ii) The vertex is $(-1,10)$.
iii) The axis of symmetry is $x=-1$.
e) i) $a<0$, so the parabola opens downward.
ii) The vertex is $(0,5)$.
iii) The axis of symmetry is $x=0$.
2. a) a<0, so the parabola opens downward and has a maximum at (0,3). The maximum is above the x-axis, so it will have two x-intercepts.

b) $a<0$, so the parabola opens downward and has a maximum at $(-2,-5)$. The maximum is below the x-axis, so it will have no x-intercepts.

c) a>0, so the parabola opens upward and has a minimum at $(-4,2)$. The minimum is above the $x-$ axis, so it will have no x-intercepts.

d) $a>0$, so the parabola opens upward and has a minimum at $(3,-6)$. The minimum is below the x axis, so it will have two x-intercepts.

